Quadratic Equations Exercise 2(a)– Complete Notes, Examples & Solutions | Class 10th Odia BSE

Welcome to ePathshala!

Let’s understand one of the most important and scoring chapters of Class 10 Mathematics — Quadratic Equations. This topic is essential for your board exam and forms the base for higher classes and competitive exams.

What is a Quadratic Equation?

A quadratic equation is a polynomial equation of degree 2. It is written in the form:

ଏକ ଦ୍ଵିଘାତ ସମୀକରଣ ହେଉଛି ଏକ ୨ ଘାତ ପଲିନୋମିଆଲ୍ ବିଶିଷ୍ଟ ସମୀକରଣ । ଏହାକୁ ନିମ୍ନଲିଖିତ ରୂପରେ ଲେଖାଯାଏ:

ax²+bx+c=0, where:

a,b,c are real numbers and a≠0

✅ Important: If a=0, then the equation becomes linear, not quadratic
✅ ଗୁରୁତ୍ୱପୂର୍ଣ୍ଣ: ଯଦି a = 0 ହୁଏ, ତେବେ ସମୀକରଣଟି ଏକ ସରଳ ସମୀକରଣ ପାଲଟିଯାଏ, ଏହା ଆଉ ଦ୍ଵିଘାତ ହୋଇ ରହେନାହିଁ ।

🎯 Examples

  • 2x²+3x+1=0
  • x²−4x=0
  • 3x²+7=0

Non-example:

  • 5x+2=0 (ସରଳ ସମୀକରଣ Linear Equation).

How to Identify a Quadratic Equation? ଏକ ସମୀକରଣ ଦ୍ଵିଘାତ ସମୀକରଣକୁ ଚିହ୍ନିବ କିପରି?

Look for

  • The highest power of the variable (x) is 2.
  • ଅଜ୍ଞାତ ରାଶି (x) ର ସର୍ବାଧିକ ଘାତ ହେଉଛି ୨ ।
  • The equation is equal to 0.
  • ସମୀକରଣଟି ୦ (ଶୂନ) ସହିତ ସମାନ 

Tip: Rearrange terms if needed. For example

ସୂଚନା: ଆବଶ୍ୟକ ପଡ଼ିଲେ ପଦଗୁଡ଼ିକୁ ପୁନର୍ବାର ସଜାନ୍ତୁ (Rearrange) । 

x(x−3)=10 becomes x²−3x−10=0

Methods to Solve a Quadratic Equation ଦ୍ଵିଘାତ ସମୀକରଣର ସମାଧାନ 

1️⃣ Factorisation Method

This method splits the middle term to factorise the quadratic expression

ଏହି ପ୍ରଣାଳୀରେ ମଧ୍ୟପଦକୁ ଭାଙ୍ଗି ସମୀକରଣଟିକୁ ଦୁଇଟି ରୈଖିକ ଗୁଣନଖଣ୍ଡରେ ପରିଣତ କରାଯାଏ ।

Example:
x²- 5x + 6 = 0
=> x² -2x-3x+6 = 0
=> x(x-2) -3(x-2)=0
=>(x-2) (x-3) = 0
=> x= 2 or x =3

2️⃣ Completing the Square ପୂର୍ଣ୍ଣବର୍ଗରେ ପରିଣତ କରି

🔹 Method 1: When the Coefficient of x² is ଯେତେବେଳେ ର ସହଗ ୧ ହୋଇଥାଏ

This is used when the quadratic equation is already in the form:
ଏହା ସେତେବେଳେ ବ୍ୟବହୃତ ହୁଏ, ଯେତେବେଳେ ଦ୍ୱିଘାତ ସମୀକରଣଟି ଏହି ରୂପରେ ଥାଏ:

x² + bx + c = 0

✅ Steps:

1. Move the constant term c to the right side:
'c' କୁ ଡାହାଣ ପାର୍ଶ୍ୱକୁ ନେଇଯାଆନ୍ତୁ :
x² + bx = -c

2. Take half of the coefficient of x, square it, and add to both sides:
x ର ସହଗର ଅଧା ନିଅନ୍ତୁ, ଏହାର ବର୍ଗ କରନ୍ତୁ ଏବଂ ଉଭୟ ପାର୍ଶ୍ୱରେ ଯୋଗ କରନ୍ତୁ :
x² + bx + (b/2)² = -c + (b/2)²

3. Write the left-hand side as a perfect square:
ବାମ ପାର୍ଶ୍ୱକୁ ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ରୂପରେ ଲେଖନ୍ତୁ :
(x + b/2)² = RHS

4. Take square root on both sides:
ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ (Square Root) ନିଅନ୍ତୁ :
x + b/2 = ±√RHS

5. Solve for x x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
🔹 Method 2: When the Coefficient of x² is NOT 1 ଯେତେବେଳେ x^2 ର ସହଗ (Coefficient) ୧ ହୋଇନଥାଏ
Used when the equation is in the form:

ax² + bx + c = 0

✅ Steps:

1. Divide the entire equation by a:
ସମ୍ପୂର୍ଣ୍ଣ ସମୀକରଣକୁ 'a' ଦ୍ୱାରା ଭାଗ କରନ୍ତୁ
x² + (b/a)x + (c/a) = 0

2. Move the constant term to the other side:
ଧ୍ଯୁବକକୁ ଅନ୍ୟ ପାର୍ଶ୍ୱକୁ ନେଇଯାଆନ୍ତୁ
x² + (b/a)x = -c/a

3. Take half of the coefficient of x, square it, and add to both sides
x ର ସହଗର ଅଧା ନିଅନ୍ତୁ, ଏହାର ବର୍ଗ କରନ୍ତୁ ଏବଂ ଉଭୟ ପାର୍ଶ୍ୱରେ ଯୋଗ କରନ୍ତୁ :
x² + (b/a)x + (b/2a)² = -c/a + (b/2a)²

4. Left-hand side becomes a perfect square
ବାମ ପାର୍ଶ୍ୱଟି ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ (Perfect Square) ରେ ପରିଣତ ହୁଏ:
(x + b/2a)² = RHS

5. Take square root on both sides and solve for x
ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ (Square Root) ନିଅନ୍ତୁ ଏବଂ x ର ମୂଲ୍ୟ ବାହାର କରନ୍ତୁ :
x = -b/2a ± √(b² - 4ac)/2a

3️⃣ Quadratic Formula

x=(−b±√b2−4ac)/2a

This is the most universal method and works for every quadratic equation.
ଏହା ହେଉଛି ସବୁଠାରୁ ସର୍ବଜନୀନ ପ୍ରଣାଳୀ ଏବଂ ଏହା ପ୍ରତ୍ୟେକ ଦ୍ଵିଘାତ ସମୀକରଣ ପାଇଁ କାମ କରେ

🔍 Discriminant – Very Important!

The discriminant (D) is the value inside the square root of the quadratic formula

ପ୍ରଭେଦକ (D) ହେଉଛି ଦ୍ଵିଘାତ ସୂତ୍ରର ବର୍ଗମୂଳ (Square root) ଭିତରେ ଥିବା ମୂଲ୍ୟ : D=b²−4ac

  • If D>0: Two real and distinct roots
  • If D=0: Two real and equal roots
  • If D<0: No real roots (imaginary roots)

✅ Summary

Formax²+bx+c=0
MethodsFactorisation, Completing Square, Quadratic Formula
RootsReal or Imaginary based on Discriminant
UseAlgebra, Physics, Business, and more

🎥 Watch our Full Video on Quadratic Equations

👉 Click here to watch

📌 Quick Practice

Solve:
1. x ²−7x+10=0
2. x ²+3x−5=0

Tell us your answers in the comments below

Solution Note and Quiz

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top